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What is Green Steel? Ironmaking?

Iron ores are reduced to Iron (Fe + impurities) before making steel:
1. Iron Oxide + C + Flux = Iron(l) + Slag + CO/CO,  90-95%
2. Iron Oxide + Natural Gas = Iron + Water + CO/CO, 5-10%

3. Iron Oxide + H, = Iron + Water <1%
4. Iron Oxide + electrons = Iron + Oxygen Lab.
5. Iron Oxide + Reactive Metal = Iron + RM Oxide Lab.

Phase the first two routes into the final three
Replace C and NG with “sustainable sources”

Utilise Carbon Capture and Storage technology
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Who makes steel?

Global steel production in 2023
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Where does the ore come from?

Top-10 iron ore exporting countries in 2023
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Iron Ores
Hematite (70 wt.% Fe) -e,0,4
Magnetite (72 wt.% Fe) -e,0,
Siderite -eCO,
Goethite ~eO(0OH)

High grade ores (65 wt.% +) — less than 10% of current supply
Low grade ores (30-62 wt.%)
Silica and alumina will increase slag volume

Phosphorus and sulphur costly to remove Images from www.mii.org
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Pathways & Iron Ore Quality — Major Routes
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Swedish Hydrogen Strategy Hybrit
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Pre-feasibility Study Feasibility Study Demonstration
Pilot plant trials Plant Trials and transformation
< 2016 — 2017 2018 - 2024 » 2025 -2040
2016 2018 2025
Prefeasibility study with Decision for pilot phase with support Transformation - BF to EAF at SSAB
support from the Swedish from the Swedish Energy Agency Oxeldsund SSAB, LKAB, Vattenfall
Energy Agency Fossil-free
2018-2021 2025
4-year R&D project with Fossil free pellets trials Demonstration plant - first fossil
Support from the Swedish free steel on market by 2026
Energy Agency 2020-2024
Hydrogen based reduction and 2030-2040
2017 melting trials Industrial plants for HYBRIT
A joint venture company )
formed between SSAB, LKAB 2021/22-2024 i 2030- 2040
and Vattenfall Hydrogen storage trials Transformation - BF to EAF at SSAB
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Processing of Low Grade Ores ?
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RP 1.014 Electric Smelting for Australian Ores

De-risking of electric smelting furnace for Australian ores, Geoff Brooks (Swinburne/CSIRO)

Aims:

a) How does the gangue content of the iron ore effect
performance of the ESF in terms of productivity, energy
usage, metal chemistry and attractiveness of the slag as
cement feedstock?

b) How does the form of the DRI level of carbon and
operating temperature of ESF effect the productivity,
energy usage, metal and slag chemistry?

c) Can waste oxides and scrap be easily incorporated into
the ESF process?

d) What is impact on the techno-economics of processing
Australian iron ores through H2 DRI-ESF route?

Approach:

Mixture of modelling, high temperature experimentation,
pilot plant/industrial data and techno-economics

Status:

« Agreement sent to partners for review and signature Images from https://www.sms-group.com/de-
« Planned start date: 7 October 2024 de/plants/electric-smelters-and-submerged-arc-
+  Planned completion date: 7/09/2027 lurnaces 3
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Where is “Green” Steel up to?
Hydrogen DRI most likely route to “Green Steel” because:

a) Difficult (impossible?) to replace large amounts of coke/coal in
existing Blast Furnace technology

b) Linking carbon based ironmaking with Carbon Capture &
Storage not demonstrated to date and requires depleted oil
wells and/or suitable geology near plant

c) Biomass routes require steady/affordable supply of
“sustainable” biocarbon — partial solution?

d) Electrolysis/Metallothermic routes are a long way from
commercialisation

© Swinburne University of Technology



Global Supply of Hydrogen

Low emission Hydrogen
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IEA, 2024, Global Hydrogen Review 2024
IEA, 2023, CO2 Emissions in 2023 o
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Scale up of Green Hydrogen Production

Alkaline single cell element 20 MW electrolyser unit “scalum” Highly scalable industrial plant

Water (KOH)

3 thyssenkrupp nucera

Thyssenkrupp nucera, HiTemp4, October 2024
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Figure 2.2: Green steel is more cost-competitive than green ammonia in
the near-term

‘Green premium’ (additional cost of hydrogen-based product over cost of fossil
fuel-based product) for Australian-made green steel and green ammonia
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Start with Steel, Grattan Institute, May 2020
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Current Cost of Hydrogen

Today, Green Hydrogen Is Consistently More Expensive Than Gray
Levelized cost of hydrogen in 2023, by market
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Source: BloombergNEF. Note: Blue H2 is the average of auto-thermal reforming (ATR)and steam methane
reforming (SMR) production. Green H2 includes Western-made proton-exchange membrane electrolyzers
(top of range) and alkaline electrolyzers (bottom of range), exceptin China, which includes Chinese-made

alkaline electrolyzers (bottom of range). BloombergNEF
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Does Hydrogen need to be Green?

Carbon intensities of
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Sources
1. An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector, 2022
2. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen, 2021
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Challenges for Hydrogen DRI

Suitable supply of renewable energy (GW scale required)
Current low scale of Green Hydrogen production (MW scale)

Concern with cost and supply — nervous investment
environment

Processing of lean ores in existing technology — how will they
perform?

Will it be necessary to agglomerate and/or grind these ores
before feeding into H, DRI processes?

© Swinburne University of Technology



Australian Initiative - Calix ZESTY Process
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Calix ZESTY - New Hydrogen DRI Process
Iron Ores Fines/Hydrogen Gas Flash Smelting
Electrical Heated Reactor — Renewable Energy
Testing underway in Bacchus Marsh Facility
Building on experience in calcining kilns
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Australian Initiative - Calix ZESTY Process

Figure 4: Typical SEM images of ZESTY processed iron ores: closed and open pores were
observed in FC43, HG57, HG59, while MA68 showed denser structure (ore type = various;
wall temperature = 950°C; feed rate = 60 kg/h; H2/ORED stoichiometry = 2).

Boot-Handford et al. Metec & 6" ESTAD 2023 _ o
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Alternative Decarbonization Routes: Electrolytic Routes

Molten Oxide Electrolysis? Molten Salt? Aqueous Hydroxide?
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Humbert et al., J. Sustain Metallurgy 2024
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Molten Oxide Electrolysis — Operating Costs
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Humbert et al., J. Sustain Metallurgy 2024

© Swinburne University of Technology



Molten Oxide Electrolysis — Anode Materials
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Figure 1 | Electrolysis experiments demonstrate metal and oxygen

production with a macroscopically stable CryyFe, ,anode. a, Variation of the
cell voltage (left axis) and oxygen and nitrogen content of the process gas (right)
during constant-currentelectrolysis (7= 1,565 “C, 92,964 C). b, Fracture of the

Allanore et al, Nature 2013

cathode deposit, showing the deposition of molten metal on top of the
substrate. ¢, Macrographs of a CrgoFe,, anode before (left) and after (right)
electrolysis, showing the limited change in dimensions (T'= 1,565 “C,
21,923 C).
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Green Steel: The Big Picture

Hydrogen based ironmaking has impetus (particularly in EU)
Cost/Scale of Green Hydrogen is major issue
Processing of high gangue ores? Electric Smelters?

Australian become a Green Iron exporter?

Time for Innovation & Risk

© Swinburne University of Technology
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